


To Whom It May Concern,

I am writing to confirm that Rebar X Glass Fiber Reinforced Polymer (GFRP) rebar complies with the building codes listed within and is suitable as a substitute for conventional steel rebar in slabs-on-grade, foundation footings and cast in place walls.



#### Substitution in Footings, Stem Walls, and Slabs-on-Grade

- Rebar X Glass Fiber Reinforced Polymer (GFRP) rebar, sizes #3 and #4 may replace steel rebar sizes #4 and #5, respectively, in typical residential and commercial foundation elements:
  - Inverted-T footings
  - Slabs-on-grade with continuous exterior footings
  - Stem walls with top and bottom longitudinal reinforcement
  - Driveways and parking lots

#### Independent Test Results

Tested by Metallurgical Engineering Services, Inc. (MES) in Richardson, TX (Lab No. 49631, March 19, 2025) on #4 GFRP composite rebar (nom. dia. 0.5 in, 36 in length):

- Tensile Strength (ASTM D7205-21):
  - Avg. Peak Load: 28,497 lbf
  - Avg. Strength: 142,500 psi
  - Ultimate Elongation: 2.28%
  - Elastic Modulus: 6.65 Msi
- Transverse Shear Strength (ASTM D7617-11):
  - Avg. Load: 5,690 lbf
  - Avg. Strength: 14,200 psi
- Bond Strength to Concrete (ASTM D7913-14):
  - Avg. Load: 5,070 lbf
  - Avg. Strength: 1,291 psi (2.5 in bonded length, 0.5 in diameter)
- Thermal Expansion (ASTM E831-24): 5.72  $\mu\text{m}/\text{m}^\circ\text{C}$
- Glass Content (ASTM D2584-18): 78.3% average by mass

#### Basis for Code Compliance

- ACI 318: Many footings and walls qualify as "plain concrete." Rebar X Glass Fiber Reinforced Polymer (GFRP) meets minimum reinforcement requirements.
- Tensile Strength Comparison:
  - #3 Rebar X (14.2 kips) > #4 Grade 40 steel (8 kips)
  - #4 Rebar X (28.5 kips) > #5 Grade 40 (12.4 kips)
- Shrinkage and Temperature Reinforcement: Compliant per ACI 440.1R. Lower modulus reduces curing cracks.
- Corrosion Resistance: Ideal for humid, coastal zones (e.g., Florida). Far exceeds steel rebar in this category.

## Tensile Strength Comparison Justification

To validate the substitution claim, the tensile capacity of each bar is calculated

as:

$$\text{Tensile Capacity} = A \times f_t \quad (1)$$

where:

- $A$  is the nominal cross-sectional area,
- $f_t$  is the tensile strength (GFRP) or yield strength (steel).

Grade 40 Steel Rebar:

- #4 bar (Area = 0.20 in<sup>2</sup>):  $0.20 \times 40,000 = 8,000 \text{ lb} = 8.0 \text{ kips}$
- #5 bar (Area = 0.31 in<sup>2</sup>):  $0.31 \times 40,000 = 12,400 \text{ lb} = 12.4 \text{ kips}$

Rebar X Glass Fiber Reinforced Polymer (GFRP) (based on ASTM D7205-21 lab results):

- #3 PirateBar (est. Area = 0.10 in<sup>2</sup>):  $0.10 \times 142,500 = 14,250 \text{ lb} = 14.25 \text{ kips}$
- #4 PirateBar (Area = 0.20 in<sup>2</sup>):  $0.20 \times 142,500 = 28,500 \text{ lb} = 28.5 \text{ kips}$

Comparison:

- #3 Rebar X (14.25 kips) > #4 Grade 40 Steel (8.0 kips)
- #4 Rebar X (28.5 kips) > #5 Grade 40 Steel (12.4 kips)

This supports the stated substitution guidance based on tensile capacity.

Drag Equation: Shrinkage & Temp. Reinforcement Comparison Using ACI 440.1R Let:

$$\rho_f = \frac{\mu L w_c}{E_f \varepsilon_{fu}}, \quad (2)$$

with:

- $\mu$ : subgrade friction coefficient
- $L$ : slab length or spacing
- $w_c$ : concrete weight
- $E_f$ : elastic modulus (6.65 Ms)
- $\varepsilon_{fu}$ : 2.28% ultimate strain

The required reinforcement ratio for shrinkage and temperature in slabs-on-grade is given by the above drag equation.

Assume:

- Subgrade friction:  $\mu = 1.5$
- Slab length:  $L = 20 \text{ ft} = 240 \text{ in}$
- Concrete weight:  $w_c = 145 \text{pcf} = 0.145 \text{ kip}/\text{ft}^3$
- GFRP modulus:  $E_f = 6.65 \times 10^6 \text{ psi}$
- Ultimate strain:  $\varepsilon_{fu} = 0.0228$

$$\rho_f = \frac{1.5 \times 20 \times 0.145}{6.65 \times 10^6 \times 0.0228} = \frac{4.35}{151,620} = 2.87 \times 10^{-5}$$

Bar Area Provided vs. Required:

- #3 GFRP: Area = 0.11 in<sup>2</sup>
- #4 GFRP: Area = 0.20 in<sup>2</sup>

Assume bars @ 12" spacing:

$$\rho_{\#3 \text{ GFRP}} = \frac{0.11}{12} = 9.17 \times 10^{-3} \quad (\text{OK})$$

$$\rho_{\#4 \text{ GFRP}} = \frac{0.20}{12} = 1.67 \times 10^{-2} \quad (\text{OK})$$

Comparison with Grade 40 Steel:

- #4 Steel:  $E_s = 29 \times 10^6 \text{ psi}$ , yield strain:  $\varepsilon_y = 40,000/29,000,000 = 0.00138$
- #5 Steel: Area = 0.31 in<sup>2</sup>, spacing = 12"

$$\rho_{\#4 \text{ Steel}} = \frac{0.20}{12} = 1.67 \times 10^{-2}$$

$$\rho_{\#5 \text{ Steel}} = \frac{0.31}{12} = 2.58 \times 10^{-2}$$

Both #3 and #4 Rebar X GFRP exceed the required  $\rho_f$  by over 300x. Similarly, steel bars at typical spacing far exceed shrinkage requirements, but GFRP offers higher strength-to-weight ratio and corrosion resistance.

Tim Albro  
President / Owner  
Rebar X  
405-696-6624

